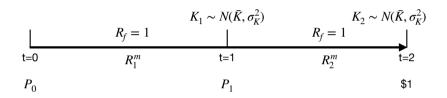
Discussion of "When Do Treasuries Earn the Convenience Yield?"


Viral V. Acharya and Toomas Laarits

Discussed by Zhiyu Fu The University of Chicago

Overview

- A very nice paper on an important topic: the convenience yield
- Main contribution: A new determinant of convenience yields—the hedging demand
 - ► Moving beyond supply (Krishnamurthy and Vissing-Jorgensen 2012), the fed fund rate (Nagel 2016), or liquidity demand (Krishnamurthy and Li 2021)
 - ► Extensive empirical results supporting the hypothesis
- A current shortcoming: Unclear about the primitives of the hedging demand
- My suggestion: Use a model framework to clarify
- Following slides: An example of a toy model to help understand empirics

My Own Take on the Empirics using a Toy Model

- Set the risk-free rate $R_f = 1$ for simplicity
- Bonds without convenience flows have $P_0^f = P_1^f = 1$
- Treasuries offer unobserved convenience benefits (flows) K_t at t = 1, 2
- K_t is uncertain and comoves with equity returns R_t^m

THE CONVENIENCE YIELD FOR A SHORT-TERM BOND

- Consider a short-term bond from t = 1 to t = 2
- Denote the return inclusive of convenience flow as $R_2^K \equiv \frac{K_2+1}{P_1}$, we have:

$$E_1[R_2^K] - R_f = \Lambda Cov_1(R_2^K, R_2^m)$$

• The paper postulates (using notations in the paper, sr_{t+1} unexpected returns):

Convenience Yield_t
$$\approx -\Lambda Cov(sr_{t+1} - sr_{t+1}^T, r_{t+1}^M)$$

THE CONVENIENCE YIELD FOR A SHORT-TERM BOND

- Consider a short-term bond from t = 1 to t = 2
- Denote the return inclusive of convenience flow as $R_2^K \equiv \frac{K_2+1}{P_1}$, we have:

$$E_1[R_2^K] - R_f = \Lambda Cov_1(R_2^K, R_2^m)$$

• The paper postulates (using notations in the paper, sr_{t+1} unexpected returns):

Convenience Yield_t
$$\approx -\Lambda Cov(sr_{t+1} - sr_{t+1}^T, r_{t+1}^M)$$

• The convenience yield should be the difference in yields (or, prices):

$$cy_1 \equiv P_1 - 1 = E_1 [K_2] - \Lambda Cov_1 (K_2, R_2^m)$$

THE CONVENIENCE YIELD FOR A SHORT-TERM BOND

$$cy_1 \equiv P_1 - 1 = E_1 [K_2] - \Lambda Cov_1 (K_2, R_2^m)$$

- The convenience yield for a short-term bond have two components:
 - ▶ The expected convenience flows E_1 [K_2]
 - ▶ Presumably as a function of bond supply, the fed fund rate, etc...
 - ► The hedging property $-\Lambda Cov_1(K_2, R_2^m)$: This paper (?)
 - ▶ If the convenience flow K_2 is more valued during bad time, ex-ante cy is higher

THE CONVENIENCE YIELD FOR A LONG-TERM BOND

• Solve backward to t = 0, we have the *cy* for a two-period bond:

$$cy_0 \equiv \frac{P_0 - 1}{2} = \frac{1}{2} \sum_{t=1}^{2} E_0[K_t] - \frac{1}{2} \Lambda \sum_{t=1}^{2} Cov_0(K_t, R_t^m) - \frac{1}{2} \Lambda Cov_0(cy_1, R_1^m)$$

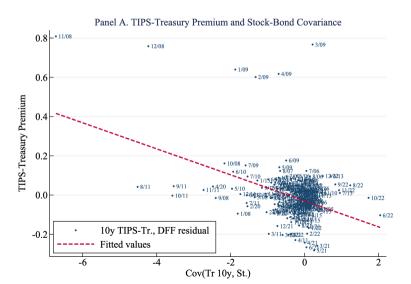
- ▶ The expected convenience flow $E_0[K_t]$
- ► Hedging demand from the convenience flows $-\frac{1}{2}\Lambda \sum_{t=1}^{2} Cov_0 (K_t, R_t^m)$
- ► Hedging demand from future convenience yield movement
- There are two hedging benefits from a long-term convenient bond!

MAP IT TO DATA

• Convenience flows K_t are unobservable, so this paper measures the covariance using observed returns from the convenience yield:

$$Cov(sr_{t+1} - sr_{t+1}^T, r_{t+1}^M)$$

• In the model, it measure the hedging property of the future convenience *yield*:


$$Cov_0(\frac{P_1-P_0}{P_0},R_1^m) \propto Cov_0(cy_1,R_1^m)$$

It does not directly capture hedging from the convenience flow $Cov(K_t, R_t^m)$!

• Model prediction:

$$Cov_0(cy_1, R_1^m) \downarrow \iff cy_0 \uparrow$$

MAP IT TO DATA

What's Behind the Correlation (and What's not)?

- The hedging property of the convenience *flow Cov*(K_t , R_t^m) does not directly enter the correlation
- The correlation is driven by the hedging property of future convenience *yields*:

$$Cov_0(cy_1, R_1^m) = Cov_0(E_1[K_2] - \Lambda Cov_1(K_2, R_2^m), R_1^m)$$

Plausible interpretations of $Cov_0(cy_1, R_1^m) < 0$:

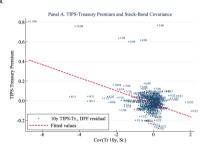
- ► $Cov_0(E_1[K_2], R_1^m)$ < 0: during bad times, expected future convenience benefits are higher
 - ► Stems from a persistent effect from $Cov_0(K_1, R_1^m) < 0$
- ► $Cov_0(-\Lambda Cov_1(K_2, R_2^m), R_1^m)$: during bad times, convenience flows are a better hedge

SHORT-TERM VS. LONG-TERM DEBATE

- In data, short-term *cy* also correlated with the Cov(Tr 10yr, St.)
- One common critique:
 - ► Cov(Tr 10yr, St.) measures hedging from future convenience yields $Cov_0(cy_1, R_1^m)$
 - ► Short-term *cy* does not have $Cov_0(cy_1, R_1^m)$
- The model offers a potential reconciliation:
 - ► The primitive is hedging from convenience flows $Cov_0(K_1, R_1^m)$
 - ► $Cov_0(cy_1, R_1^m)$ is linked to $Cov_0(K_1, R_1^m)$ via the persistence in K_t

Panal B

Panel b.			
	1996-2022		
	30y Sw-Tr	GC-Tr 3m	
Cov(Tr 10y, St.)	-0.069** (-2.17)	-0.044** (-2.46)	
Eff. Fed Funds	$0.177^{***} (10.84)$	$0.032^{***} (5.24)$	
Constant	-0.254*** (-4.47)	0.057^{***} (3.18)	
Observations R^2	319 0.636	380 0.197	


Take-away from the Toy Model

- There can be two (connected) hedging properties
 - ▶ Hedging with convenience flows $Cov(K_t, R_t^m)$
 - ► Hedging with future convenience yields $Cov_0(cy_1, R_1^m) = Cov_0(E_1[K_2] \Lambda Cov_1(K_2, R_2^m), R_1^m)$
- The paper seems to be showing the latter
- Outstanding questions:
 - What are the sources of hedging properties?
 - ▶ What DGPs can link hedging in convenience flows to hedging in future *cy*?
 - ► How do we understand the time-varying covariance?
 - ► Time-varying uncertainty; shifting in main drivers of shocks; etc...

EMPIRICAL I: GENERATED REGRESSORS

Generated regressors: The covariance is estimated in a 30-day look-back window

- How accurate are the estimates? Maybe plot confidence intervals
- Adjust the standard errors to take into account estimation errors in the covariance (e.g. bootstrapping)
- Using different lengths of the windows for robustness

EMPIRICAL II: EVENT STUDIES

- Authors show a panel of event studies that Fed's action change cy as well as the Cov(Tr 10yr, St.)
- Irrelevant to the key message:
 - Authors explain the results using supply-driven mechanism
 - Unclear why covariance will change (sometimes in the inconsistent directions)
- My recommendation: Drop them (unless better interpretations)

	10y TIPS-Treasury Prem.	Cov(Prem. 10y, St.)
Purchases	0.036***	-0.467***
	(4.83)	(-13.26)
Collateral	-0.127***	-0.668***
	(-17.13)	(-19.00)
Foreign	-0.059***	0.064*
_	(-7.87)	(1.82)
Exclude	-0.097***	-0.248***
	(-13.03)	(-7.06)
Constant	0.004	0.016
	(0.55)	(0.46)
Observations	104	104
R^2	0.053	0.057

Conclusion

- An important new determinant of the convenience yield via hedging
- My suggestions:
 - ► Using a theoretical framework to clarify the primitives
 - ▶ Providing some thoughts on the sources of time variation in covariances
 - ► Refining empirical results to sharpen the key message

REFERENCES

REFERENCES

- Krishnamurthy, Arvind and Wenhao Li (July 3, 2021). The Demand for Money, Near-Money, and Treasury Bonds. SSRN Scholarly Paper ID 3879713. Rochester, NY: Social Science Research Network. DOI: 10.2139/ssrn.3879713. URL: https://papers.ssrn.com/abstract=3879713 (visited on 11/22/2021).
 - Krishnamurthy, Arvind and Annette Vissing-Jorgensen (Apr. 1, 2012). "The Aggregate Demand for Treasury Debt". In: Journal of Political Economy 120.2, pp. 233–267. ISSN: 0022-3808. DOI: 10.1086/666526. URL: https://www.journals.uchicago.edu/doi/abs/10.1086/666526 (visited on 03/10/2018).
- Nagel, Stefan (Nov. 1, 2016). "The Liquidity Premium of Near-Money

 Assets*". In: Q J Econ 131.4, pp. 1927–1971. ISSN: 0033-5533. DOI: 10.1093/qje/qjw028.

 URL: http://academic.oup.com/gje/article/131/4/1927/2468878 (visited on 14/14